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Abstract

Most current image categorization methods require lardleatmns of man-
ually annotated training examples to learn accurate vise@bgnition models.
The time-consuming human labeling effort effectively lisnihese approaches to
recognition problems involving a small number of differebfect classes. In or-
der to address this shortcoming, in recent years severabesihave proposed to
learn object classi ers from weakly-labeled Internet irragsuch as photos re-
trieved by keyword-based image search engines. While trasegy eliminates
the need for human supervision, the recognition accuradidsese methods are
considerably lower than those obtained with fully-supsediapproaches, because
of the noisy nature of the labels associated to Web data.

In this paper we investigate and compare methods that lezage classi ers by
combining very few manually annotated examples (e.g., Irldyes per class)
and a large number of weakly-labeled Web photos retrievedkeyword-based
image search. We cast this as a domain adaptation problgam gifew strongly-
labeled examples in a target domain (the manually annott@aples) and many
source domain examples (the weakly-labeled Web photas)) ldassi ers yield-
ing small generalization error on the target domain. Oueexpents demonstrate
that, for the same number of strongly-labeled examplesdourain adaptation
approach produces signi cant recognition rate improvetsewer the best pub-
lished results (e.gg5%better when using labeled training examples per class)
and that our classi ers are one order of magnitude fasteedon and to evaluate
than the best competing method, despite our use of largelyvidieled data sets.

1 Introduction

The last few years have seen a proliferation of human eftortsollect labeled image data sets
for the purpose of training and evaluating visual recognisystems. Label information in these
collections comes in different forms, ranging from simpliext category labels to detailed semantic
pixel-level segmentations. Examples include Caltech28§ pnd the Pascal VOC2010 data set [7].
In order to increase the variety and the number of labelegabljasses, a few authors have designed
online games and appealing software tools encouraging @musers to participate in these image
annotation efforts [23, 30]. Despite the tremendous reseawntribution brought by such attempts,
even the largest labeled image collections today [6] aridito a number of classes that is at least
one order of magnitude smaller than the number of objectoaies that humans can recognize [3].
In order to overcome this limitation and in an attempt to daibssi ers for arbitrary object classes,
several authors have proposed systems that learn fromyvizdddled Internet photos [10, 9, 29, 20].
Most of these approaches rely on keyword-based image seagshes to retrieve image examples
of speci ed object classes. Unfortunately, while imagershangines provide training examples



without the need of any human intervention, it is suf cienttype a few example keywords in
Google or Bing image search to verify that often the majooifythe retrieved images are only
loosely related with the query concept. Most prior work htiemapted to address this problem
by means of outlier rejection mechanisms discarding iveeleimages from the retrieved results.
However, despite the dynamic research activity in this anesakly-supervised approaches today
still yield signi cantly lower recognition accuracy thaualfy supervised object classi ers trained on
clean data (see, e.g., results reported in [9, 29]).

In this paper we argue that the poor performance of modetadeafrom weakly-labeled Internet
data is not only due to undetected outliers contaminatiegithining data, but it is also a conse-
guence of the statistical differences often present betweéeb images and the test data. Figure 1
shows sample images for some of the Caltech256 object aésgeersus the top six images re-
trieved by Bing using the class names as keywbrdalthough a couple of outliers are indeed
present in the Bing sets, the striking difference betweertwo collections is that even the relevant
results in the Bing groups appear to be visually less homeges For example, in the case of the
classes shown in gure 1(a,b), while the Caltech256 growpgain only real photographs, the Bing
counterparts include several cartoon drawings. In gured), each Caltech256 image contains
only the object of interest while the pictures retrieved bgdBinclude extraneous items, such as
people or faces, which act as distractors in the learnirig i@glparticularly true when evaluating the
classi ers on Caltech256, given that "faces” and "people8 aeparate categories in the data set).
Furthermore, even when "irrelevant” results do occur inrgteéeved images, they are rarely outliers
detectable via simple coherence tests as there is often sonséstency even among such photos.
For example, polysemy — the capacity of one word to have pilaltneanings — causes multiple
visual clusters (as opposed to individual outliers) to @pjethe Bing sets of gure 1(e,f) (the two
clusters in (e) are due to the fact that the word "hawksb#lidtes both a crag in Arkansas as well as
a type of sea turtle, while in the case of (f) the keyword Stdle” retrieves images of both bicycles
as well as motorcycles with three wheels; note, again, thlie€h256 contains for both classes only
images corresponding to one of the words meanings and thatofoycle” appears as a separate
additional category). Finally, in some situations, diffiet shooting distances or angles may produce
completely unrelated views of the same object or scene:x@amele, the Bing set in 1(g) includes
both aerial and ground views of Mars, which have very litteommon visually.

Note that for most of the classes in gure 1 it is not clear apnwhich are the “relevant” Internet
images to be used for training until we compare them to theégsha the corresponding Caltech256
categories. In this paper we show that a few strongly-label@amples from the test domain (e.g. a
few Caltech256 images for the class of interest) are indefcient to disambiguate this relevancy
problem and to model the distribution differences betwéenteakly-labeled Internet data and the
test application data, so as to signi cantly improve reatign performance on the test set.

The situation where the test data is drawn from a distriloutiat is related, but not identical, to
the distribution of the training data has been widely stddirethe eld of machine learning and it
is traditionally addressed using so-called "domain adaptamethods. These techniques exploit
ample availability of training data from source domairio learn a model that works effectively
in a relatedtarget domairfor which only few training examples are available. Morenfialy, let
pt(X;Y ) andps(X;Y ) be the distributions generating the target and the sourtze tsspectively.
Here, X denotes the input (a random feature vector) #nthe class (a discrete random variable).
The domain adaptation problem arises whengVvéx;Y ) differs from ps(X;Y ). In covariance
shift, it is assumed that only the distributions of the infrdtures differ in the two domain, i.e.,
pt(YjX) = pS(YjX) butp'(X) 6 p3(X). Note that, without adaptation, this may lead to poor clas-
si cation in the target domain since a model learned fromrgdasource training set will be trained
to perform well in the dense source regionsXfwhich, under the covariance shift assumption,
will generally be different from the dense regions of thg&trdomain. Typically, covariance shift
algorithms (e.g., [16]) address this problem by modelirggrtitiop' (X )=p*(X ). Unfortunately, the
much more common and challenging case is when the condititistaibutions are different, i.e.,
p'(YjX) & p°(YjX). When such differences are relatively small, however, Kadge gained by
analyzing data in the source domain may still yield valuaiiermation to perform prediction for
test target data. This is precisely the scenario considertis paper.

"Note that image search results may have changed since t@sgles were captured.
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Figure 1: Images in Caltech256 for several categories gmeesults retrieved by Bing image search
for the corresponding keywords. The Bing sets are both sgoadlg and visually less coherent:
presence of multiple objects in the same image, polysemigatarization, as well as variations in
viewpoints are some of the visual effects present in Inteimages which cause signi cant data
distribution differences between the Bing sets and theesponding Caltech256 groups.



2 Relationship to other methods

Most of the prior work on learning visual models from imagarsé has focused on the task of
“cleaning up” Internet photos. For example, in the pionagwork of Fergus et al. [10], visual lters
learned from image search were used to rerank photos ons$iediaisual consistency. Subsequent
approaches [2, 25, 20] have employed similar outlier rejactchemes to automatically construct
clean(er) data sets of images for training and testing olojessi ers. Even techniques aimed at
learning explicit object classi ers from image search [9] Bave identi ed outlier removal as the
key-ingredient to improve recognition. In our paper we foom another fundamental, yet largely
ignored, aspect of the problem: we argue that the currentperformance of classi cation models
learned from the Web is due to the distribution differencesvieen Internet photos and image test
examples. To the best of our knowledge we propose the rdesayatic empirical analysis of domain
adaptation methods to address sample distribution diftexgin object categorization due to the use
of weakly-labeled Web images as training data. We note thabrk concurrent to our own, Saenko
et al. [24] have also analyzed cross-domain adaptation jefcoblassi ers. However, their work
focuses on the statistical differences caused by varyigtiig conditions (uncontrolled versus
studio setups) and by images taken with different camermstya digital SLR versus a webcam).

Transfer learning, also known as multi-task learning, latesl to domain adaptation. In computer
vision, transfer learning has been applied to a wide rangeddflems including object categorization
(see, e.g., [21, 8, 22]). However, transfer learning addrea different problem. In transfer learning

associated td@ distinct tasks (e.g., learning classi ers for differentj@tt classes). Typically, it
is assumed that some relations exist among the tasks; for@&asome common structure when

adaptation we have a single task but different domainsdikerent sources of data.

As our approach relies on a mix of labeled and weakly-labetedyes, it is loosely related to semi-

supervised methods for object classi cation [15, 19]. Witkhis genre, the algorithm described

in [11] is perhaps the closest to our work as it also relies eakly-labeled Internet images. How-

ever, unlike our approach, these semi-supervised methedieasigned to work in cases where the
test examples and the training data are generated from e diatribution.

3 Approach overview

3.1 Experimental setup

Our objective is to evaluate domain adaptations methodd@maisk of object classi cation, using
photos from a human-labeled data set as target domain egaiapdl images retrieved by a keyword-
based image search engine as examples of the source domain.

We used Caltech256 as the data set for the target domainisiiscan established benchmark for
object categorization and it contains a large number oBelsa§256) thus allowing us to average out
performance variations due to especially easy or dif calisgories. From each class, we randomly
samplecht images as target training examples, and othgrimages as target test examples.

We formed the weakly-labeled source data by collecting dipent images retrieved by Bing im-

age search for each of the Caltech256 category text labédilsough it may have been possible to
improve the relevancy of the image results for some of thesela by manually selecting less am-
biguous search keywords, we chose to issue queries on thenged Caltech256 text class labels
to avoid subjective alteration of the results. However, liden to ensure valid testing, we removed
near duplicates of Caltech256 images from the source tr@gset by a human-supervised process.

3.2 Feature representation and classi cation model

In order to study the effect of large weakly-labeled tragngets on object recognition performance,
we need a baseline system that achieves good performanbgamh @ategorization and that supports
ef cientlearning and test evaluation. The current bestljghled results on Caltech256 were obtained
by a kernel combination classi er using 39 different featleernels, one for each feature type [13].
However, since both training as well testing are computiatiy very expensive with this classi er,
this model is unsuitable for our needs.



Instead, in this work we use as image representation theestas features recently proposed by
Torresani et al. [28]. This descriptor is particularly abie for our task as it has been shown to
yield near state-of-the-art results with simple linearan vector machines, which can be learned
very ef ciently even for large training sets. The descriptoeasures the closeness of an image
to a basis set of classes and can be used as an intermediaserggation to learn classi ers for
new classes. The basis classi ers of the classeme descamdearned from weakly-labeled data
collected for a large and semantically broad set of atteibuthe nal descriptor contains 2659
attributes). To eliminate the risk of the test classes baiready explicitely represented in the feature
vector, in this work we removed from the descriptor 34 ati@s, corresponding to categories related
to Caltech256 classes. We use a binarized version of thigigas obtained by thresholding @
the output of the attribute classi ers: this yields for edntage a 2625-dimensional binary vector
describing the predicted presence/absence of visuabais in the photo. This binarization has
been shown to yield very little degradation in recogniti@nfprmance (see [28] for further details).
We denote witlf (x) 2 f 0;1g" the binary attribute vector extracted from imageith F = 2625.

Object class recognition is traditionally formulated as altiolass classi cation problem: given a

number of possible classes (in the case of CaltechR56; 256). In this paper we implement
multi-class classi cation usindK binary classi ers trained using thene-versus-the-restcheme
and perform prediction according to thénner-take-allstrategy. The-th binary classi er (distin-
guishing between clagsand the other classes) is trained on a target traininBseind a collection

D; of weakly-labeled source training exampl&s. is formed by aggregating the Caltech256 train-
ing images of all classes, using the data fromkkta class as positive examples and the data from
the remaining classes as negative examplespire= f (f };y};k )gi’\‘;1 wheref | = f (x!) denotes
the feature vector of theth image,N; = (K ny) is the total number of images in the strongly-
labeled data set, an]j;k 2 f 1;1gis 1iff examplei belongs to clas&. The source training
setDy = ff 7 g5, is the collection ofns images retrieved by Bing using the category name of
thek-th class as keyword. As discussed in the next section,rdiffenethods will make different
assumptions on the labels of the source examples.

We adopt a linear SVM as the model for the binary one-vs-#st-¢lassi ers. This choice is pri-
marily motivated by the availability of several simple ydfeetive domain adaptation variants of
SVM [5, 26], in addition to the aforementioned reasons ofdyperformance and ef ciency.

4 Methods

We now present the speci ¢ domain adaptation SVM algorithRwg brevity, we drop the subscript
k indicating dependence on the speci c class. The hyperpetensC of all classi ers are selected

S0 as to minimize the multiclass cross validation error @t#nget training data. For all algorithms,
we cope with the largely unequal number of positive and negakamples by normalizing the cost
entries in the loss function by the respective class sizes.

4.1 BaselinesSVM, SVM, SVMLt

We include in our evaluation three algorithmet based on domain adaptation and use them as
comparative baselines. We indicate wBWVM a linear SVM learned exclusively from the target
examples.SVM denotes an SVM learned from the source examples using theersas-the-rest
scheme and assuming no outliers are present in the imagehgesults.SVML t is a linear SVM
trained on the union of the target and source examples. $pkyi for each classk, we train a
binary SVM on the data obtained by mergin§ with D3, where the data in the latter set is assumed
to contain only positive examples, i.e., no outliers. Thpdmnparametet is kept the same for aK
binary classi ers but tuned distinctly for each of the thraethods by selecting the hyperparameter
value yielding the best multiclass performance on the targming set (we used hold out validation
onD}, for SVM and 5-fold cross validation for bo®VM as wellSVML ).

4.2 Mixture of source and target hypothesesMIXSVM

One of the simplest possible strategies for domain adaptatnsists of using as nal classi er a
convex combination of the two SVM hypotheses learned indéeetly from the source and target
data. Despite its simplicity, this classi er has been shaavgield good empirical results [26].



Let us represent the source and target multiclass hypatlasseector-valued functiors’(f ) !

RX, h'(f) ! RKX, where thek-th outputs are the respective SVM scores for clasIXSVM
computes a convex combinatibnf Y= hS(f)+(1  )h'(f) and predicts the clags associated

to the largest output, i.e&k = argmaxyys 1:::k g hk(f ). The parameter 2 [0; 1] is determined
via grid search by optimizing multiclass error on the tatgaining set. We avoid biased estimates
resulting from learning the hypothesi$§ and on the same training set by applying a two-stage
procedure: we learn 5 distinct hypothesésusing 5-fold cross validation (with the hyperpameter
value found forSVM) and compute prediction'(f }) at each training sample} using the cross
validation hypothesis that was not trained on that exampéethen use these predicted outputs to
determine the optimal. Last, we learn the nal hypothesig using the entire target training set.

4.3 Domain weighting: DWSVM

Another straightforward yet popular domain adaptationrageh is to train a classi er using both
the source and the target examples by weighting differéhéiyywo domains in the learning objec-
tive [5, 12, 4]. We follow the implementation proposed in J2&d weight the loss function values
differently for the source and target examples by using tistritt SVM hyperparameter€s and
C:, encoding the relative importance of the two domains. Theesgof these hyperparameters are
selected by minimizing the multiclass 5-fold cross validiaterror on the target training set.

4.4 Feature augmentationAUGSVM

We denote withAUGSVMhe domain adaptation method described in [5]. The key-afethis
approach is to create a feature-augmented version of edahdnal examplef , where distinct
feature augmentation mapping$; ' are used for the source and target data, respectively:
h it h it
S(fy= fT f7 07 and Yfy= fTo" f7 (1)

where0 indicates & -dimensional vector of zeros. A linear SVM is then trainedtios union of
the feature-augmented source and target examples (usingla byperparameter). The principle
behind this mapping is that the SVM trained in the featurgragnted space has the ability to distin-
guish features having common behavior in the two domairseaated to the rsE SVM weights)
from features having different properties in the two dorsain

4.5 Transductive learning: TSVM

The previous methods implement different strategies tasidie relative importance of the source
and the training examples in the learning process. Howeleihese techniques assume that the
source data is fully and correctly labeled. Unfortunatlyour practical problem this assumption
is violated due to outliers and irrelevant results beingsen¢ in the images retrieved by keyword
search. To tackle this problem we propose to perform tragts@uinference on the label of the
source datauring the learning the key-idea is to exploit the availability of stronglyskeed target
training data to simultaneously determine the correctlfabéthe source training examples and
incorporate this labeling information to improve the class To address this task we employ the
transductive SVM model introduced in [17]. Although thistimed is traditionally used to infer
the labels of unlabeled data available at learning timeytpots a proper inductive hypothesis and
therefore can be used also to predict labels of unseen testggs. The problem of learning a
transductive SVM in our context can be formulated as foltows

X cs X
min Sjwiiz+ Ct dIyiwTE )+ S IyewTE )
Wiys 2 ) ns J ]
i=1 j=1
1 X
subjectto — max(0; signw " f §)] = )
=1

wherel() denotes the loss functiom is the vector of SVM weightsy® contains the labels of the
source examples, and tokeare scalar coef cients used to counterbalance the effettefinequal
number of positive and negative examples: wecset 1=n'if y! =1,c = 1=(K 1)n') other-
wise. The scalar parameteide nes the fraction of source examples that we expect to Is#ipe
and is tuned via cross validation. Note tAi&@VMsolves jointly for the separating hyperplane and
the labels of the source examples by trading off maximiraedithe margin and minimization of the
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prediction errors on both source and target data. This dagdition can be interpreted as implement-
ing the cluster assumption, i.e., the expectation thattpa@ina data cluster have the same label. We
solve the optimization problemin Eqg. 2 for a quadratic sofirgin loss functioh (i.e.,| is chosen to

be the square of the hinge loss) using the minimization #@lyorproposed in [27], which computes
an ef cient primal solution using the modi ed nite Newton athod of [18]. This minimization
approach is ideally suited to large-scale sparse datawsetisas ours (about 70% of our features are

and selected them by minimizing the multiclass cross vatidaerror. We also tried letting vary
for each individual class but that led to slightly inferiesults, possibly due to over tting.

5 Experimental results

We now present the experimental results. Figure 2 showsdbieracy achieved by the different
algorithms when using® = 300 and a varying number of training target exampla¥).( The
accuracy is measured as the average of the mean recogritoper class, using! = 25 test
examples for each class. The best accuracy is achieved bgthain adaptation method@sVMand
DWSVMvhich produce signi cant improvements over the SVM traingsing only target examples
(SVM), particularly for small values aft. Forn' = 5, TSVMyields a65%improvement over the
best published results on this benchmark (for the same nuofiegamples, an accuracy ©6:.7%is
reported in [13]). Our method achieves this performancetajyaing additional images, the Internet
photos, but since these are collected automatically andtloeguire any human supervision, the
gain we achieve is effectively "Thuman-cost free”. It is i@sting to note that while using solely
source training images yields very low accurat¥:.5%for SVM), adding even just a single labeled
target image produces a signi cant improvemen8{Machievesl85% accuracy withnt = 1,
and27:1% with nt = 5): this indicates that the method can indeed adapt the @agsi work
effectively on the target domain given a small amount ofrgjtg-labeled data. It is interesting to
note that whileTSVMimplements a form of outlier rejection as it solves for thiedis of the source
examples DWSVMssumes that all source imagesDf are positive examples for cla&s Yet,
DWSVMchieves results similar to those BBVM this suggests that domain adaptation rather than
outlier rejection is the key-factor contributing to the irmapement with respect to the baselines.

By analyzing the performance of the baselines in gure 2 weesbe that training exclusively with
Web images $VM) yields much lower accuracy than using strongly-labelei@ ¢@VM): this is
consistent with prior work [9, 29]. Furthermore, the pooca@cy of SVM! t compared tdSVM
suggests that na'vely adding a large number of source drartpthe target training set without
consideration of the domain differences not only does nigt Inat actually worsens the recognition.

Figure 3 illustrates the signi cant manual annotation sgvdbroduced by our approach: tkeaxis
is the number of target labeled images provided 8/Mwhile the y-axis shows the number of
additionallabeled examples that would be neede®M to achieve the same accuracy.
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The settingn® = 300 in the results above was chosen by studying the recognitiooracy as
a function of the number of source examples: we carried owxgeriment where we xed the
numbern! of target training example for each category to an interatedvalue it = 10), and
varied the numben® of top image results used as source training examples foraass. Figure 4
summarizes the results. We notice that the performanceedbtfM trained only on source images
(SVM) peaks ah® = 100 and decreases monotonically after this value. This reaunlbe explained
by observing thatimage search engines provide imagegisact®rding to estimated relevancy with
respect to the keyword. It is conceivable to assume thatéség down in the ranking list will often
tend to be outliers, which may lead to degradation of redagmparticularly for non-robust models.
Despite this, we see that the domain adaptation meth8d84viandDWSVMxhibit a monotonically
non-decreasing accuracy@sgrows: this indicates that these methods are highly robustitiers
and can make effective use of source data even when incgaasicauses a likely decrease of the
fraction of inliers and relevant results. Contrast thedmusd performances with the accuracy of
SVML t, which grows as we begin adding source examples but therysleapidly aftems = 10
and approaches the poor recognitior8dfM for large values ohs.

Our approach compares very favorably with competing algors also in terms of computational
complexity: trainingTSVM(without cross validation) on Caltech256 witth = 5 andns = 300
takes 84 minutes on a AMD Opteron Processor 280 2.4GHzjmgthe multiclass method of [13]
using 5 labeled examples per class takes about 23 hours sartie machine (for fairness of com-
parison, we excluded cross validation even for this methAdetailed analysis of training time as a
function of the number of labeled training examples is régbin gure 5. Evaluation of our model
on a test example takes 0.18ms, while the method of [13] reg@i7ms.

6 Discussion and future work

In this work we have investigated the application of domaliagation methods to object categoriza-
tion using Web photos as source data. Our analysis inditiaéswhile object classi ers learned
exclusively from Web data are inferior to fully-supervisemdels, the use of domain adaptation
methods to combine Web photos with small amounts of strolaglgled data leads to state-of-the-
art results. The proposed strategy should be particuladful in scenarios where labeled data is
scarce or expensive to acquire. Future work will includeligppion of our approach to combine
data from multiple source domains (e.g., images obtain@a fiifferent search engines or photo
sharing sites) and different media (e.qg., text and videaldifional material including software and
our source training data may be obtained from [1].
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