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Abstract

Most current image categorization methods require large collections of man-
ually annotated training examples to learn accurate visualrecognition models.
The time-consuming human labeling effort effectively limits these approaches to
recognition problems involving a small number of differentobject classes. In or-
der to address this shortcoming, in recent years several authors have proposed to
learn object classi�ers from weakly-labeled Internet images, such as photos re-
trieved by keyword-based image search engines. While this strategy eliminates
the need for human supervision, the recognition accuraciesof these methods are
considerably lower than those obtained with fully-supervised approaches, because
of the noisy nature of the labels associated to Web data.
In this paper we investigate and compare methods that learn image classi�ers by
combining very few manually annotated examples (e.g., 1-10images per class)
and a large number of weakly-labeled Web photos retrieved using keyword-based
image search. We cast this as a domain adaptation problem: given a few strongly-
labeled examples in a target domain (the manually annotatedexamples) and many
source domain examples (the weakly-labeled Web photos), learn classi�ers yield-
ing small generalization error on the target domain. Our experiments demonstrate
that, for the same number of strongly-labeled examples, ourdomain adaptation
approach produces signi�cant recognition rate improvements over the best pub-
lished results (e.g.,65%better when using5 labeled training examples per class)
and that our classi�ers are one order of magnitude faster to learn and to evaluate
than the best competing method, despite our use of large weakly-labeled data sets.

1 Introduction

The last few years have seen a proliferation of human effortsto collect labeled image data sets
for the purpose of training and evaluating visual recognition systems. Label information in these
collections comes in different forms, ranging from simple object category labels to detailed semantic
pixel-level segmentations. Examples include Caltech256 [14], and the Pascal VOC2010 data set [7].
In order to increase the variety and the number of labeled object classes, a few authors have designed
online games and appealing software tools encouraging common users to participate in these image
annotation efforts [23, 30]. Despite the tremendous research contribution brought by such attempts,
even the largest labeled image collections today [6] are limited to a number of classes that is at least
one order of magnitude smaller than the number of object categories that humans can recognize [3].
In order to overcome this limitation and in an attempt to build classi�ers for arbitrary object classes,
several authors have proposed systems that learn from weakly-labeled Internet photos [10, 9, 29, 20].
Most of these approaches rely on keyword-based image searchengines to retrieve image examples
of speci�ed object classes. Unfortunately, while image search engines provide training examples
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without the need of any human intervention, it is suf�cient to type a few example keywords in
Google or Bing image search to verify that often the majorityof the retrieved images are only
loosely related with the query concept. Most prior work has attempted to address this problem
by means of outlier rejection mechanisms discarding irrelevant images from the retrieved results.
However, despite the dynamic research activity in this area, weakly-supervised approaches today
still yield signi�cantly lower recognition accuracy than fully supervised object classi�ers trained on
clean data (see, e.g., results reported in [9, 29]).

In this paper we argue that the poor performance of models learned from weakly-labeled Internet
data is not only due to undetected outliers contaminating the training data, but it is also a conse-
quence of the statistical differences often present between Web images and the test data. Figure 1
shows sample images for some of the Caltech256 object categories versus the top six images re-
trieved by Bing using the class names as keywords1. Although a couple of outliers are indeed
present in the Bing sets, the striking difference between the two collections is that even the relevant
results in the Bing groups appear to be visually less homogeneous. For example, in the case of the
classes shown in �gure 1(a,b), while the Caltech256 groups contain only real photographs, the Bing
counterparts include several cartoon drawings. In �gure 1(c,d), each Caltech256 image contains
only the object of interest while the pictures retrieved by Bing include extraneous items, such as
people or faces, which act as distractors in the learning (this is particularly true when evaluating the
classi�ers on Caltech256, given that ”faces” and ”people” are separate categories in the data set).
Furthermore, even when ”irrelevant” results do occur in theretrieved images, they are rarely outliers
detectable via simple coherence tests as there is often someconsistency even among such photos.
For example, polysemy — the capacity of one word to have multiple meanings — causes multiple
visual clusters (as opposed to individual outliers) to appear in the Bing sets of �gure 1(e,f) (the two
clusters in (e) are due to the fact that the word ”hawksbill” denotes both a crag in Arkansas as well as
a type of sea turtle, while in the case of (f) the keyword ”tricycle” retrieves images of both bicycles
as well as motorcycles with three wheels; note, again, that Caltech256 contains for both classes only
images corresponding to one of the words meanings and that ”motorcycle” appears as a separate
additional category). Finally, in some situations, different shooting distances or angles may produce
completely unrelated views of the same object or scene: for example, the Bing set in 1(g) includes
both aerial and ground views of Mars, which have very little in common visually.

Note that for most of the classes in �gure 1 it is not clear a priori which are the “relevant” Internet
images to be used for training until we compare them to the photos in the corresponding Caltech256
categories. In this paper we show that a few strongly-labeled examples from the test domain (e.g. a
few Caltech256 images for the class of interest) are indeed suf�cient to disambiguate this relevancy
problem and to model the distribution differences between the weakly-labeled Internet data and the
test application data, so as to signi�cantly improve recognition performance on the test set.

The situation where the test data is drawn from a distribution that is related, but not identical, to
the distribution of the training data has been widely studied in the �eld of machine learning and it
is traditionally addressed using so-called ”domain adaptation” methods. These techniques exploit
ample availability of training data from asource domainto learn a model that works effectively
in a relatedtarget domainfor which only few training examples are available. More formally, let
pt (X; Y ) andps(X; Y ) be the distributions generating the target and the source data, respectively.
Here,X denotes the input (a random feature vector) andY the class (a discrete random variable).
The domain adaptation problem arises wheneverpt (X; Y ) differs from ps(X; Y ). In covariance
shift, it is assumed that only the distributions of the inputfeatures differ in the two domain, i.e.,
pt (Y jX ) = ps(Y jX ) butpt (X ) 6= ps(X ). Note that, without adaptation, this may lead to poor clas-
si�cation in the target domain since a model learned from a large source training set will be trained
to perform well in the dense source regions ofX which, under the covariance shift assumption,
will generally be different from the dense regions of the target domain. Typically, covariance shift
algorithms (e.g., [16]) address this problem by modeling the ratiopt (X )=ps(X ). Unfortunately, the
much more common and challenging case is when the conditional distributions are different, i.e.,
pt (Y jX ) 6= ps(Y jX ). When such differences are relatively small, however, knowledge gained by
analyzing data in the source domain may still yield valuableinformation to perform prediction for
test target data. This is precisely the scenario consideredin this paper.

1Note that image search results may have changed since these examples were captured.
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Figure 1: Images in Caltech256 for several categories and top results retrieved by Bing image search
for the corresponding keywords. The Bing sets are both semantically and visually less coherent:
presence of multiple objects in the same image, polysemy, caricaturization, as well as variations in
viewpoints are some of the visual effects present in Internet images which cause signi�cant data
distribution differences between the Bing sets and the corresponding Caltech256 groups.
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2 Relationship to other methods

Most of the prior work on learning visual models from image search has focused on the task of
“cleaning up” Internet photos. For example, in the pioneering work of Fergus et al. [10], visual �lters
learned from image search were used to rerank photos on the basis of visual consistency. Subsequent
approaches [2, 25, 20] have employed similar outlier rejection schemes to automatically construct
clean(er) data sets of images for training and testing object classi�ers. Even techniques aimed at
learning explicit object classi�ers from image search [9, 29] have identi�ed outlier removal as the
key-ingredient to improve recognition. In our paper we focus on another fundamental, yet largely
ignored, aspect of the problem: we argue that the current poor performance of classi�cation models
learned from the Web is due to the distribution differences between Internet photos and image test
examples. To the best of our knowledge we propose the �rst systematic empirical analysis of domain
adaptation methods to address sample distribution differences in object categorization due to the use
of weakly-labeled Web images as training data. We note that in work concurrent to our own, Saenko
et al. [24] have also analyzed cross-domain adaptation of object classi�ers. However, their work
focuses on the statistical differences caused by varying lighting conditions (uncontrolled versus
studio setups) and by images taken with different camera types (a digital SLR versus a webcam).

Transfer learning, also known as multi-task learning, is related to domain adaptation. In computer
vision, transfer learning has been applied to a wide range ofproblems including object categorization
(see, e.g., [21, 8, 22]). However, transfer learning addresses a different problem. In transfer learning
there is a single distribution of the inputsp(X ) but there are multiple output variablesY1; : : : ; YT ,
associated toT distinct tasks (e.g., learning classi�ers for different object classes). Typically, it
is assumed that some relations exist among the tasks; for example, some common structure when
learning classi�ersp(Y1 jX; � 1); : : : ; p(YT jX; � T ) can be enforced by assuming that the parameters
� 1; : : : ; � T are generated from a shared priorp(� ). The fundamental difference is that in domain
adaptation we have a single task but different domains, i.e., different sources of data.

As our approach relies on a mix of labeled and weakly-labeledimages, it is loosely related to semi-
supervised methods for object classi�cation [15, 19]. Within this genre, the algorithm described
in [11] is perhaps the closest to our work as it also relies on weakly-labeled Internet images. How-
ever, unlike our approach, these semi-supervised methods are designed to work in cases where the
test examples and the training data are generated from the same distribution.

3 Approach overview

3.1 Experimental setup
Our objective is to evaluate domain adaptations methods on the task of object classi�cation, using
photos from a human-labeled data set as target domain examples and images retrieved by a keyword-
based image search engine as examples of the source domain.

We used Caltech256 as the data set for the target domain sinceit is an established benchmark for
object categorization and it contains a large number of classes (256) thus allowing us to average out
performance variations due to especially easy or dif�cult categories. From each class, we randomly
samplednT images as target training examples, and othermT images as target test examples.

We formed the weakly-labeled source data by collecting the top nS images retrieved by Bing im-
age search for each of the Caltech256 category text labels. Although it may have been possible to
improve the relevancy of the image results for some of the classes by manually selecting less am-
biguous search keywords, we chose to issue queries on the unchanged Caltech256 text class labels
to avoid subjective alteration of the results. However, in order to ensure valid testing, we removed
near duplicates of Caltech256 images from the source training set by a human-supervised process.

3.2 Feature representation and classi�cation model
In order to study the effect of large weakly-labeled training sets on object recognition performance,
we need a baseline system that achieves good performance on object categorization and that supports
ef�cient learning and test evaluation. The current best published results on Caltech256 were obtained
by a kernel combination classi�er using 39 different feature kernels, one for each feature type [13].
However, since both training as well testing are computationally very expensive with this classi�er,
this model is unsuitable for our needs.
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Instead, in this work we use as image representation the classeme features recently proposed by
Torresani et al. [28]. This descriptor is particularly suitable for our task as it has been shown to
yield near state-of-the-art results with simple linear support vector machines, which can be learned
very ef�ciently even for large training sets. The descriptor measures the closeness of an image
to a basis set of classes and can be used as an intermediate representation to learn classi�ers for
new classes. The basis classi�ers of the classeme descriptor are learned from weakly-labeled data
collected for a large and semantically broad set of attributes (the �nal descriptor contains 2659
attributes). To eliminate the risk of the test classes beingalready explicitely represented in the feature
vector, in this work we removed from the descriptor 34 attributes, corresponding to categories related
to Caltech256 classes. We use a binarized version of this descriptor obtained by thresholding to0
the output of the attribute classi�ers: this yields for eachimage a 2625-dimensional binary vector
describing the predicted presence/absence of visual attributes in the photo. This binarization has
been shown to yield very little degradation in recognition performance (see [28] for further details).
We denote withf (x ) 2 f 0; 1gF the binary attribute vector extracted from imagex with F = 2625.

Object class recognition is traditionally formulated as a multiclass classi�cation problem: given a
test imagex , predict the class labely 2 f 1; : : : ; K g of the object present in it, whereK is the
number of possible classes (in the case of Caltech256,K = 256). In this paper we implement
multi-class classi�cation usingK binary classi�ers trained using theone-versus-the-restscheme
and perform prediction according to thewinner-take-allstrategy. Thek-th binary classi�er (distin-
guishing between classk and the other classes) is trained on a target training setD t

k and a collection
Ds

k of weakly-labeled source training examples.D t
k is formed by aggregating the Caltech256 train-

ing images of all classes, using the data from thek-th class as positive examples and the data from
the remaining classes as negative examples, i.e.D t

k = f (f t
i ; yt

i;k )gN t
i =1 wheref t

i = f (x t
i ) denotes

the feature vector of thei -th image,N t = ( K � nt ) is the total number of images in the strongly-
labeled data set, andyt

i;k 2 f� 1; 1g is 1 iff example i belongs to classk. The source training
setDs

k = f f s
i;k gn s

i =1 is the collection ofns images retrieved by Bing using the category name of
thek-th class as keyword. As discussed in the next section, different methods will make different
assumptions on the labels of the source examples.

We adopt a linear SVM as the model for the binary one-vs-the-rest classi�ers. This choice is pri-
marily motivated by the availability of several simple yet effective domain adaptation variants of
SVM [5, 26], in addition to the aforementioned reasons of good performance and ef�ciency.

4 Methods

We now present the speci�c domain adaptation SVM algorithms. For brevity, we drop the subscript
k indicating dependence on the speci�c class. The hyperparametersC of all classi�ers are selected
so as to minimize the multiclass cross validation error on the target training data. For all algorithms,
we cope with the largely unequal number of positive and negative examples by normalizing the cost
entries in the loss function by the respective class sizes.

4.1 Baselines:SVMs, SVMt , SVMs[ t

We include in our evaluation three algorithmsnot based on domain adaptation and use them as
comparative baselines. We indicate withSVMt a linear SVM learned exclusively from the target
examples.SVMs denotes an SVM learned from the source examples using the one-versus-the-rest
scheme and assuming no outliers are present in the image search results.SVMs[ t is a linear SVM
trained on the union of the target and source examples. Speci�cally, for each classk, we train a
binary SVM on the data obtained by mergingD t

k with Ds
k , where the data in the latter set is assumed

to contain only positive examples, i.e., no outliers. The hyperparameterC is kept the same for allK
binary classi�ers but tuned distinctly for each of the threemethods by selecting the hyperparameter
value yielding the best multiclass performance on the target training set (we used hold out validation
onD t

k for SVMs and 5-fold cross validation for bothSVMt as wellSVMs[ t ).

4.2 Mixture of source and target hypotheses:MIXSVM

One of the simplest possible strategies for domain adaptation consists of using as �nal classi�er a
convex combination of the two SVM hypotheses learned independently from the source and target
data. Despite its simplicity, this classi�er has been shownto yield good empirical results [26].
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Let us represent the source and target multiclass hypotheses as vector-valued functionsh s(f ) !
RK , h t (f ) ! RK , where thek-th outputs are the respective SVM scores for classk. MIXSVM
computes a convex combinationh(f ) = � h s(f )+(1 � � )h t (f ) and predicts the classk � associated
to the largest output, i.e.k � = arg maxk2f 1;:::;K g hk (f ). The parameter� 2 [0; 1] is determined
via grid search by optimizing multiclass error on the targettraining set. We avoid biased estimates
resulting from learning the hypothesish t and� on the same training set by applying a two-stage
procedure: we learn 5 distinct hypothesesh t using 5-fold cross validation (with the hyperpameter
value found forSVMt ) and compute predictionh t (f t

i ) at each training samplef t
i using the cross

validation hypothesis that was not trained on that example;we then use these predicted outputs to
determine the optimal� . Last, we learn the �nal hypothesish t using the entire target training set.

4.3 Domain weighting:DWSVM
Another straightforward yet popular domain adaptation approach is to train a classi�er using both
the source and the target examples by weighting differentlythe two domains in the learning objec-
tive [5, 12, 4]. We follow the implementation proposed in [26] and weight the loss function values
differently for the source and target examples by using two distinct SVM hyperparameters,Cs and
Ct , encoding the relative importance of the two domains. The values of these hyperparameters are
selected by minimizing the multiclass 5-fold cross validation error on the target training set.

4.4 Feature augmentation:AUGSVM
We denote withAUGSVMthe domain adaptation method described in [5]. The key-ideaof this
approach is to create a feature-augmented version of each individual examplef , where distinct
feature augmentation mappings� s; � t are used for the source and target data, respectively:

� s(f ) =
h
f T f T 0T

i T
and � t (f ) =

h
f T 0T f T

i T
; (1)

where0 indicates aF -dimensional vector of zeros. A linear SVM is then trained onthe union of
the feature-augmented source and target examples (using a single hyperparameter). The principle
behind this mapping is that the SVM trained in the feature-augmented space has the ability to distin-
guish features having common behavior in the two domains (associated to the �rstF SVM weights)
from features having different properties in the two domains.

4.5 Transductive learning: TSVM
The previous methods implement different strategies to adjust the relative importance of the source
and the training examples in the learning process. However,all these techniques assume that the
source data is fully and correctly labeled. Unfortunately,in our practical problem this assumption
is violated due to outliers and irrelevant results being present in the images retrieved by keyword
search. To tackle this problem we propose to perform transductive inference on the label of the
source dataduring the learning: the key-idea is to exploit the availability of strongly-labeled target
training data to simultaneously determine the correct labels of the source training examples and
incorporate this labeling information to improve the classi�er. To address this task we employ the
transductive SVM model introduced in [17]. Although this method is traditionally used to infer
the labels of unlabeled data available at learning time, it outputs a proper inductive hypothesis and
therefore can be used also to predict labels of unseen test examples. The problem of learning a
transductive SVM in our context can be formulated as follows:

min
w ;y s

1
2

jjw jj2 + C t
N t
X

i =1

ct
i l (yt

i w
T f t

i ) +
Cs

ns

n s
X

j =1

l (ys
j w T f s

j )

subject to
1
ns

n s
X

j =1

max[0; sign(w T f s
j )] = � (2)

wherel() denotes the loss function,w is the vector of SVM weights,y s contains the labels of the
source examples, and thect

i are scalar coef�cients used to counterbalance the effect ofthe unequal
number of positive and negative examples: we setct

i = 1 =nt if yt
i = 1 , ct

i = 1 =((K � 1)nt ) other-
wise. The scalar parameter� de�nes the fraction of source examples that we expect to be positive
and is tuned via cross validation. Note thatTSVMsolves jointly for the separating hyperplane and
the labels of the source examples by trading off maximization of the margin and minimization of the
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Figure 2: Recognition accuracy obtained with
ns = 300 Web photos and a varying number of
Caltech256 target training examples.
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Figure 3: Manual annotation saving: the plot
shows for a varying number of labeled ex-
amples given toTSVMthe number ofaddi-
tional labeled images that would be needed
by SVMt to achieve the same accuracy.

prediction errors on both source and target data. This optimization can be interpreted as implement-
ing the cluster assumption, i.e., the expectation that points in a data cluster have the same label. We
solve the optimization problem in Eq. 2 for a quadratic soft-margin loss functionl (i.e.,l is chosen to
be the square of the hinge loss) using the minimization algorithm proposed in [27], which computes
an ef�cient primal solution using the modi�ed �nite Newton method of [18]. This minimization
approach is ideally suited to large-scale sparse data sets such as ours (about 70% of our features are
zero). We used the same values of hyperparameters (C t , Cs, and� ) for all classesk = 1 ; : : : ; K
and selected them by minimizing the multiclass cross validation error. We also tried letting� vary
for each individual class but that led to slightly inferior results, possibly due to over�tting.

5 Experimental results

We now present the experimental results. Figure 2 shows the accuracy achieved by the different
algorithms when usingns = 300 and a varying number of training target examples (nt ). The
accuracy is measured as the average of the mean recognition rate per class, usingmt = 25 test
examples for each class. The best accuracy is achieved by thedomain adaptation methodsTSVMand
DWSVM, which produce signi�cant improvements over the SVM trained using only target examples
(SVMt ), particularly for small values ofnt . Fornt = 5 , TSVMyields a65%improvement over the
best published results on this benchmark (for the same number of examples, an accuracy of16:7%is
reported in [13]). Our method achieves this performance by analyzing additional images, the Internet
photos, but since these are collected automatically and do not require any human supervision, the
gain we achieve is effectively ”human-cost free”. It is interesting to note that while using solely
source training images yields very low accuracy (14:5%for SVMs), adding even just a single labeled
target image produces a signi�cant improvement (TSVMachieves18:5% accuracy withnt = 1 ,
and27:1% with nt = 5 ): this indicates that the method can indeed adapt the classi�er to work
effectively on the target domain given a small amount of strongly-labeled data. It is interesting to
note that whileTSVMimplements a form of outlier rejection as it solves for the labels of the source
examples,DWSVMassumes that all source images inDs

k are positive examples for classk. Yet,
DWSVMachieves results similar to those ofTSVM: this suggests that domain adaptation rather than
outlier rejection is the key-factor contributing to the improvement with respect to the baselines.

By analyzing the performance of the baselines in �gure 2 we observe that training exclusively with
Web images (SVMs) yields much lower accuracy than using strongly-labeled data (SVMt ): this is
consistent with prior work [9, 29]. Furthermore, the poor accuracy ofSVMs[ t compared toSVMt

suggests that na�̈vely adding a large number of source examples to the target training set without
consideration of the domain differences not only does not help but actually worsens the recognition.

Figure 3 illustrates the signi�cant manual annotation saving produced by our approach: thex-axis
is the number of target labeled images provided toTSVMwhile they-axis shows the number of
additionallabeled examples that would be needed bySVMt to achieve the same accuracy.
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Figure 5: Training time: time needed to learn
a multiclass classi�er for Caltech256 using
TSVM.

The settingns = 300 in the results above was chosen by studying the recognition accuracy as
a function of the number of source examples: we carried out anexperiment where we �xed the
numbernt of target training example for each category to an intermediate value (nt = 10), and
varied the numberns of top image results used as source training examples for each class. Figure 4
summarizes the results. We notice that the performance of the SVM trained only on source images
(SVMs) peaks atns = 100 and decreases monotonically after this value. This result can be explained
by observing that image search engines provide images sorted according to estimated relevancy with
respect to the keyword. It is conceivable to assume that images far down in the ranking list will often
tend to be outliers, which may lead to degradation of recognition particularly for non-robust models.
Despite this, we see that the domain adaptation methodsTSVMandDWSVMexhibit a monotonically
non-decreasing accuracy asns grows: this indicates that these methods are highly robust to outliers
and can make effective use of source data even when increasing ns causes a likely decrease of the
fraction of inliers and relevant results. Contrast these robust performances with the accuracy of
SVMs[ t , which grows as we begin adding source examples but then decays rapidly afterns = 10
and approaches the poor recognition ofSVMs for large values ofns.

Our approach compares very favorably with competing algorithms also in terms of computational
complexity: trainingTSVM(without cross validation) on Caltech256 withnt = 5 andns = 300
takes 84 minutes on a AMD Opteron Processor 280 2.4GHz; training the multiclass method of [13]
using 5 labeled examples per class takes about 23 hours on thesame machine (for fairness of com-
parison, we excluded cross validation even for this method). A detailed analysis of training time as a
function of the number of labeled training examples is reported in �gure 5. Evaluation of our model
on a test example takes 0.18ms, while the method of [13] requires 37ms.

6 Discussion and future work

In this work we have investigated the application of domain adaptation methods to object categoriza-
tion using Web photos as source data. Our analysis indicatesthat, while object classi�ers learned
exclusively from Web data are inferior to fully-supervisedmodels, the use of domain adaptation
methods to combine Web photos with small amounts of stronglylabeled data leads to state-of-the-
art results. The proposed strategy should be particularly useful in scenarios where labeled data is
scarce or expensive to acquire. Future work will include application of our approach to combine
data from multiple source domains (e.g., images obtained from different search engines or photo
sharing sites) and different media (e.g., text and video). Additional material including software and
our source training data may be obtained from [1].
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